Enhancing Semi-Supervised Clustering: A Feature Projection Perspective

Wei Tang¹, Hui Xiong², Shi Zhong³, Jie Wu¹

¹Department of Computer Science & Engineering Florida Atlantic University

²Management Science & Information System Department Rutgers University

> ³Data Mining and Research Group Yahoo! Inc

(c) Wei Tang

Outline

- $\Rightarrow \text{Introduction}$
 - The SCREEN Algorithm
 - Experimental Results
 - Related Works
 - Conclusions

Introduction

- In many application domains:
 - Large volume of unlabeled data
 - Limited supervision:
 - * Labeled instances
 - * Pairwise instance constraints
- Semi-supervised clustering
 - Or Combining unlabeled and labeled instances
 - Improving the clustering performance through supervision

Research Motivation

- Various applications often contain high dimensional sparse data
 text documents, market basket data
- Traditional semi-supervised clustering methods:
 constraint-based, distance based, and hybrid methods
- Most existing methods are not designed for handling those data
 Euclidean notion of density is not very meaningful in high-dimensional data
- There is a need to incorperate feature reduction into the process of semi-supervised clustering

Outline

- Introduction
- \Rightarrow The SCREEN Algorithm
 - Experimental Results
 - Related Works
 - Conclusions

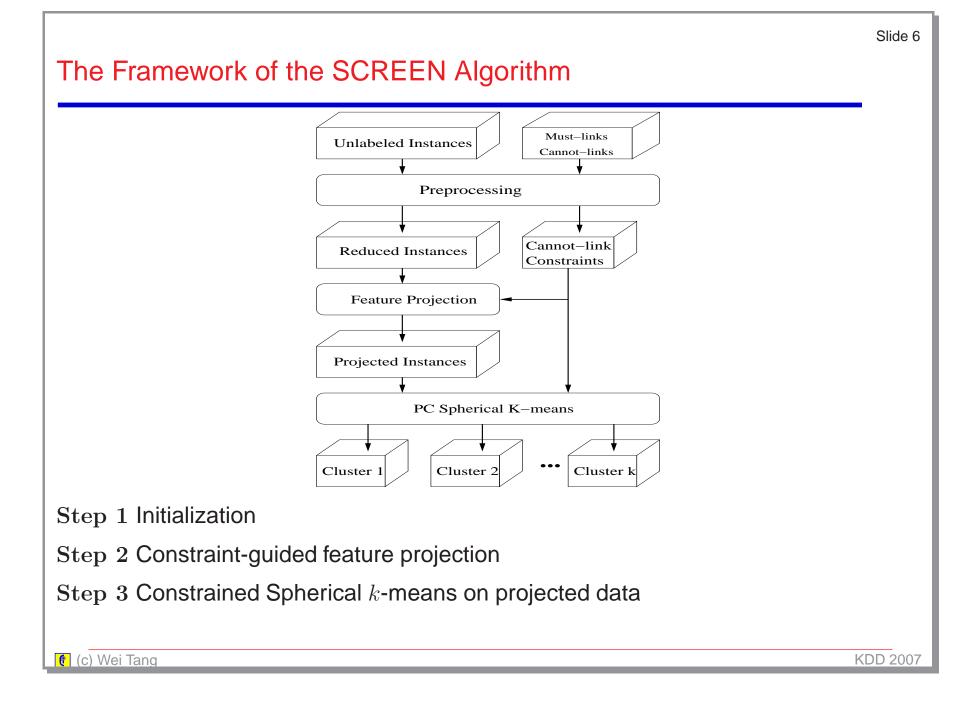
Problem Formulation

• Given:

- \diamond A set of $\mathit{d}\text{-dimensional}$ instances $\mathcal X$
- \diamond A set of <u>must-link</u> constraints C_{ML}
- \diamond A set of <u>cannot-link</u> constraints C_{CL}
- \diamond A pre-specified reduced dimension $k \ll d$
- \diamond A desired number of clusters K

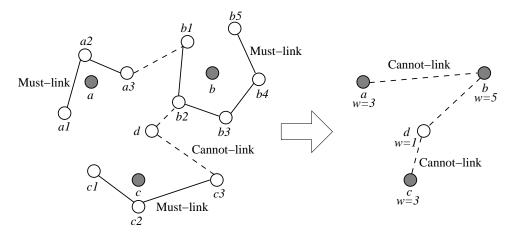
• Find:

 \diamond K clusters of instances represented in reduced k-dimensional vector which satisfies the given instance constraints.



Initialization - An Example

- Since <u>must-links</u> represent an equivalence relation, it enables us to replace each transitive closure of <u>must-links</u> with its average.
- sets {*a*₁, *a*₂, *a*₃}, {*b*₁, *b*₂, *b*₃, *b*₄, *b*₅}, and {*c*₁, *c*₂, *c*₃} represent different transitive closures enforced by <u>must-links</u>.



- After the initialization:
 - \diamond The pairwise constraints C_{ML} and C_{CL} are reduced to C'_{CL}
 - \diamond The original data sets ${\cal X}$ are reduced to ${\cal X}'$ with ${\cal W}'$

Constraint-Guided Feature Projection - SCREEN_{PROJ}

• Given

- \diamond A set of <u>cannot-link</u> constraints C'_{CL}
- \diamond A set of instances \mathcal{X}' with weight \mathcal{W}'

• Objective: find an projection matrix F, such that

$$f = \sum_{(x'_1, x'_2) \in C'_{CL}} \|w_1 w_2 \cdot F^T (x'_1 - x'_2)\|^2$$

is maximized subject to the constraints

$$F_i^T F_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

🜔 (c) Wei Tang

Solution To the Feature Projection Problem

• The Lagrangian of the above optimization problem is

$$L_{F_1,...,F_k} = f(F_1,...,F_k) - \sum_{l=1}^k \xi_l(F_l^T F_l - 1) .$$

which can be solved as

$$\frac{\partial L}{\partial F_l} = 2MF_l - 2\xi_l F_l = 0 \qquad \forall l = 1, \dots, k$$

$$\Rightarrow MF_l = \xi_l F_l \qquad \forall l = 1, \dots, k .$$
(1)

Theorem 1 Given the desired dimensionality k (k < d), the set of <u>cannot-link</u> constraints C'_{CL} , and the covariance matrix M = cov(C), the optimal projection matrix $F_{d \times k}$ is comprised of the first k eigenvectors of M corresponding to the k largest eigenvalues.

🜔 (c) Wei Tang

Constrained Spherical *K*-means

• Updating rule in applying pairwise constraints

 \diamond Given each <u>cannot-link</u> constraint $(x'_i, x'_i) \in C_{CL}$

 \diamond Find two different cluster centroids $\mu_{x'_i}$ and $\mu_{x'_i}$ such that

$$w_i \cdot x'_i^T \mu_{x'_i} + w_j \cdot x'_j^T \mu_{x'_j}$$

is maximized.

 \diamond Assign x_i' and x_j' to these two centroids to avoid violating the constraints.

	Slide 1
Outline	
 Introduction 	
 The SCREEN Algorithm 	
\Rightarrow Experimental Results	
 Related Works 	
 Conclusions 	

(c) Wei Tang

Experimental Setup

Experimental Platform

◊ GNU/Linux workstation with 4 Intel Xeon 2.8 GHz CPUs and 2G main memory

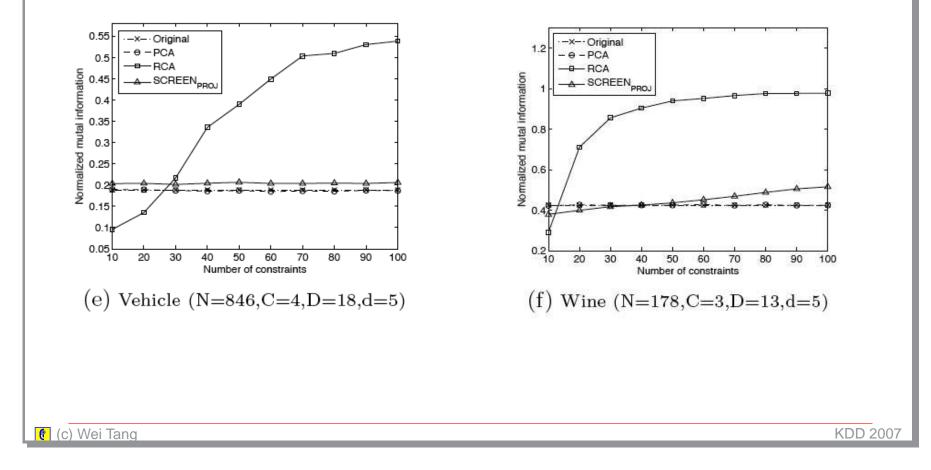
- Experimental Data Sets
 - ◊ Six data sets from UCI Machine Learning Repository
 - Six data sets from TREC collection
 - ◊ Nine data sets from 20-Newsgroups corpus
- Evaluation Measure: (Normalized Mutual Information)

$$NMI = \frac{I(\hat{Z}; Z)}{(H(\hat{Z}) + H(Z))/2}$$

where $I(\hat{Z}; Z)$ is the mutual information between the random variables \hat{Z} and Z, H(Z) is the Shannon entropy of Z.

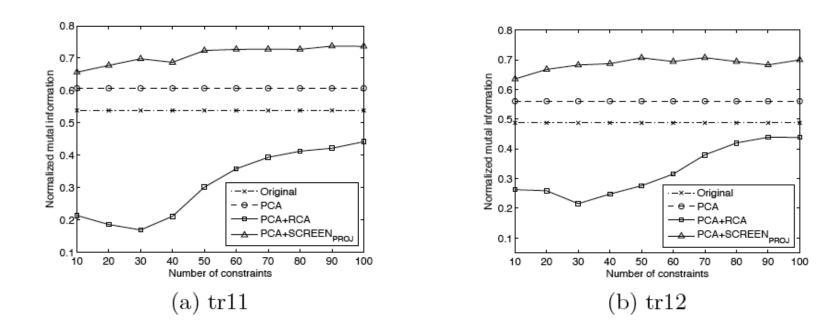
Effectiveness of SCREEN_{*PROJ*} (1)

- Compared with original, PCA and RCA on low dimensional data
- Measured by <u>NMI</u>



Slide 14

Effectiveness of SCREEN_{PROJ} (2)



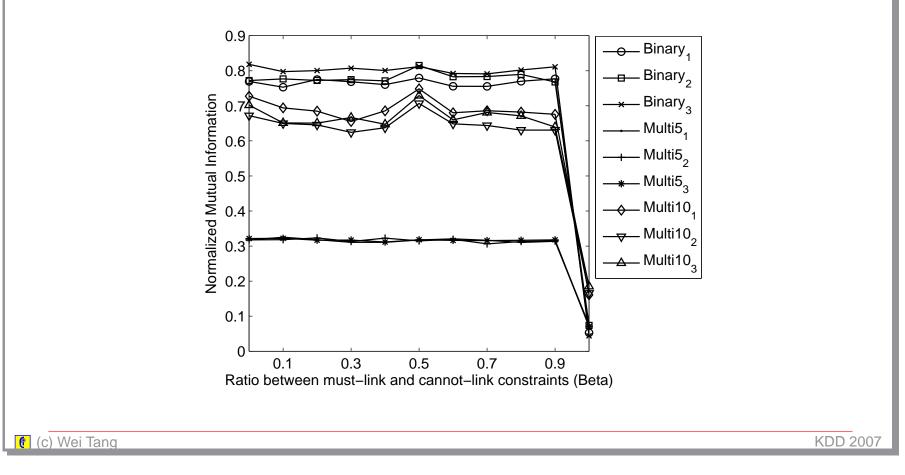
Conclusions:

- RCA performs the best in the low dimensional data; however is not a good choice in handling high dimensional data
- SCREEN_{PROJ} is comparable to, or better than PCA in low dimensional data; especially archive good performance on high dimensional data

Must-links vs. Cannot-links

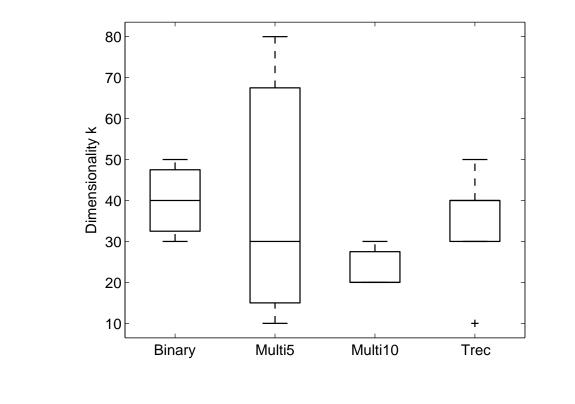
• Incorporate β into the previous objective function and varies from 0.0 to 1.0

$$f = (1 - \beta) \cdot \sum_{(x_1, x_2) \in C_{CL}} \|F^T(x_1 - x_2)\|^2 - \beta \cdot \sum_{(x_1, x_2) \in C_{ML}} \|F^T(x_1 - x_2)\|^2$$



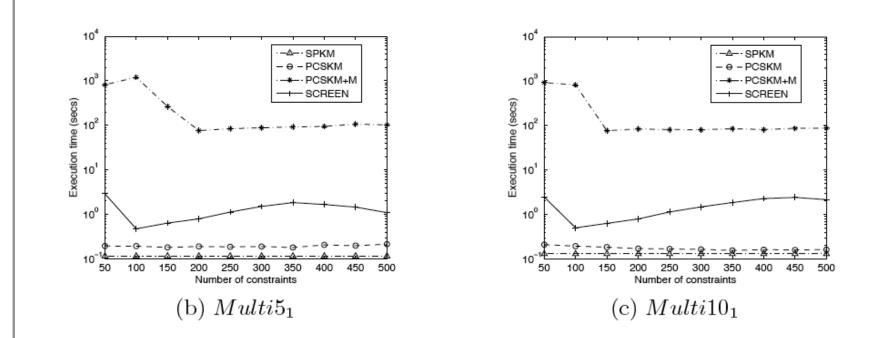
The Choice of Dimension \boldsymbol{K}

• The SCREEN algorithm on different value of k from 10 to 100



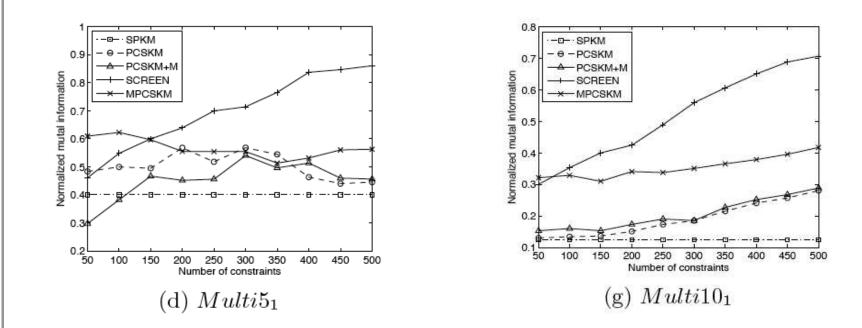
• Clustering performance is maximized when k is between 20 and 40.

Slide 16



- SCREEN ranks third due the extra cost of feature projection.
- SCREEN is much faster than the PCSKM+M algorithm which employs metric learning in the high dimensional data.

Clustering Performance of the SCREEN Algorithm



- SCREEN is more stable compared to the other methods.
- SCREEN always outperforms the PCSKM+M via metric learning and MPCSKM via HMRF model.

Outline	Slide 19
 Introduction 	
 The SCREEN Algorithm 	
 Experimental Results 	
\Rightarrow Related Works	
 Conclusions 	

🜔 (c) Wei Tang

KDD 2007

Related Works (1)

- From the perspective of semi-supervised clustering
 - Constraint-based methods (PCSKM)
 - guide the clustering process by supervision
 - ◊ Distance-based methods (PCSKM+M)
 - learn an adaptive distance based on constraints
 - Hybrid methods (MPCSKM)
 - combines them into an unified statistical framework

Related Works (2)

- From the perspective of feature projection
 - Principal Component Analysis (PCA)
 - without utilizing any supervision
 - Fisher's Linear Discriminant Analysis (LDA)
 need to get the exact class information
 - - based only on must-link constraints
 - Many others: projected clustering, CLIQUE

Outline

- Introduction
- The SCREEN Algorithm
- Experimental Results
- Related Works
- $\Rightarrow \text{Conclusions}$

Conclusions

- Formulate the constraint-guided feature projection into an optimization problem and give a closed-form solution
- Propose the SCREEN algorithm which integrates feature projection into semi-supervised clustering
- Experimental comparison between the SCREEN algorithm and the other methods

Questions?

- Email: wtang@cs.utexas.edu
- URL: http://www.cs.utexas.edu/~wtang

Thank You!

(c) Wei Tang

KDD 2007