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Introduction

• In many application domains:

⋄ Large volume of unlabeled data
⋄ Limited supervision:

* Labeled instances
* Pairwise instance constraints

• Semi-supervised clustering

⋄ Combining unlabeled and labeled instances
⋄ Improving the clustering performance through supervision
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Research Motivation

• Various applications often contain high dimensional sparse data
- text documents, market basket data

• Traditional semi-supervised clustering methods:
- constraint-based, distance based, and hybrid methods

• Most existing methods are not designed for handling those data
- Euclidean notion of density is not very meaningful in
high-dimensional data

• There is a need to incorperate feature reduction into the process of
semi-supervised clustering
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Problem Formulation

• Given:

⋄ A set of d-dimensional instances X

⋄ A set of must-link constraints CML

⋄ A set of cannot-link constraints CCL

⋄ A pre-specified reduced dimension k ≪ d

⋄ A desired number of clusters K

• Find:

⋄ K clusters of instances represented in reduced k-dimensional
vector which satisfies the given instance constraints.
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The Framework of the SCREEN Algorithm

Feature Projection

Reduced Instances Cannot−link
Constraints

Projected Instances

Must−links

Cannot−links

Preprocessing

PC Spherical K−means

...
Cluster 1 Cluster 2 Cluster k

Unlabeled Instances

Step 1 Initialization

Step 2 Constraint-guided feature projection

Step 3 Constrained Spherical k-means on projected data
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Initialization - An Example

• Since must-links represent an equivalence relation, it enables us to replace each
transitive closure of must-links with its average.

• sets {a1, a2, a3}, {b1, b2, b3, b4, b5}, and {c1, c2, c3} represent different transitive
closures enforced by must-links.
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• After the initialization:

⋄ The pairwise constraints CML and CCL are reduced to C ′
CL

⋄ The original data sets X are reduced to X ′ with W ′
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Constraint-Guided Feature Projection - SCREENPROJ

• Given

⋄ A set of cannot-link constraints C ′
CL

⋄ A set of instances X ′ with weight W ′

• Objective: find an projection matrix F , such that

f =
∑

(x′
1
,x′

2
)∈C ′

CL

‖w1w2 · F
T (x′

1 − x′
2)‖

2

is maximized subject to the constraints

F T
i Fj =











1 if i = j

0 if i 6= j
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Solution To the Feature Projection Problem

• The Lagrangian of the above optimization problem is

LF1,...,Fk
= f(F1, . . . , Fk) −

k
∑

l=1
ξl(F

T
l Fl − 1) .

which can be solved as
∂L

∂Fl
= 2MFl − 2ξlFl = 0 ∀l = 1, . . . , k

⇒ MFl = ξlFl ∀l = 1, . . . , k . (1)

Theorem 1 Given the desired dimensionality k (k < d), the set of cannot-link
constraints C ′

CL, and the covariance matrix M = cov(C), the optimal projection matrix
Fd×k is comprised of the first k eigenvectors of M corresponding to the k largest
eigenvalues.
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Constrained Spherical K-means

• Updating rule in applying pairwise constraints

⋄ Given each cannot-link constraint (x′
i, x

′
j) ∈ CCL

⋄ Find two different cluster centroids µx′i
and µx′j

such that

wi · x
′T
i µx′i + wj · x

′T
j µx′j

is maximized.

⋄ Assign x′
i and x′

j to these two centroids to avoid violating the
constraints.
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Experimental Setup

• Experimental Platform

⋄ GNU/Linux workstation with 4 Intel Xeon 2.8 GHz CPUs and 2G main memory

• Experimental Data Sets

⋄ Six data sets from UCI Machine Learning Repository

⋄ Six data sets from TREC collection

⋄ Nine data sets from 20-Newsgroups corpus

• Evaluation Measure: (Normalized Mutual Information)

NMI =
I(Ẑ ; Z)

(H(Ẑ) + H(Z))/2

where I(Ẑ; Z) is the mutual information between the random variables Ẑ and Z,
H(Z) is the Shannon entropy of Z.
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Effectiveness of SCREENPROJ (1)

• Compared with original, PCA and RCA on low dimensional data

• Measured by NMI
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Effectiveness of SCREENPROJ (2)

• Conclusions:

⋄ RCA performs the best in the low dimensional data; however is not a good
choice in handling high dimensional data

⋄ SCREENPROJ is comparable to, or better than PCA in low dimensional data;
especially archive good performance on high dimensional data
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Must-links vs. Cannot-links

• Incorporate β into the previous objective function and varies from 0.0 to 1.0

f = (1 − β) ·
∑

(x1,x2)∈CCL

‖F T (x1 − x2)‖
2 − β ·

∑

(x1,x2)∈CML

‖F T (x1 − x2)‖
2
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The Choice of Dimension K

• The SCREEN algorithm on different value of k from 10 to 100
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• Clustering performance is maximized when k is between 20 and 40.
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Computational Performance of the SCREEN Algorithm

• SCREEN ranks third due the extra cost of feature projection.

• SCREEN is much faster than the PCSKM+M algorithm which employs metric
learning in the high dimensional data.
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Clustering Performance of the SCREEN Algorithm

• SCREEN is more stable compared to the other methods.

• SCREEN always outperforms the PCSKM+M via metric learning and MPCSKM
via HMRF model.

(c) Wei Tang KDD 2007



Slide 19

Outline

• Introduction

• The SCREEN Algorithm

• Experimental Results

⇒ Related Works

• Conclusions

(c) Wei Tang KDD 2007



Slide 20

Related Works (1)

• From the perspective of semi-supervised clustering

⋄ Constraint-based methods (PCSKM)
- guide the clustering process by supervision

⋄ Distance-based methods (PCSKM+M)
- learn an adaptive distance based on constraints

⋄ Hybrid methods (MPCSKM)
- combines them into an unified statistical framework
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Related Works (2)

• From the perspective of feature projection

⋄ Principal Component Analysis (PCA)
- without utilizing any supervision

⋄ Fisher’s Linear Discriminant Analysis (LDA)
- need to get the exact class information

⋄ Relevant Component Analysis (RCA)
- based only on must-link constraints

⋄ Many others: projected clustering, CLIQUE
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Conclusions

• Formulate the constraint-guided feature projection into an
optimization problem and give a closed-form solution

• Propose the SCREEN algorithm which integrates feature projection
into semi-supervised clustering

• Experimental comparison between the SCREEN algorithm and the
other methods
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Questions?

• Email: wtang@cs.utexas.edu

• URL: http://www.cs.utexas.edu/∼wtang

Thank You!
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